Journal of Mechanism and Institution Design

jE ISSN: 2399-844X (Print), 2399-8458 (Online)
e DOI:10.22574/jmid.2021.12.001

OBJECT-BASED UNAWARENESS: AXIOMS

Oliver J. Board
Paul | Weiss, USA

ojboard@paulweiss.com
Kim-Sau Chung

Hong Kong Baptist University, China
kschung@hkbu.edu.hk

ABSTRACT

This paper provides foundations for a model of unawareness, called object-
based unawareness (OBU) structures, that can be used to distinguish between
what an agent is unaware of and what she simply does not know. At an informal
level, this distinction plays a key role in a number of papers such as Tirole
(2009) and Chung & Fortnow (2016). In this paper, we give the model-theoretic
description of OBU structures by showing how they assign truth conditions to
every sentence of the formal language used. We then prove a model-theoretic
sound and completeness theorem, which characterizes OBU structures in terms
of a system of axioms. We then verify that agents in OBU structures do not
violate any of the introspection axioms that are generally considered to be
necessary conditions for a plausible notion of unawareness. Applications are
provided in our companion paper.
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2 Object-Based Unawareness: Axioms

1. INTRODUCTION

THERE are two literatures on unawareness, and it is often not clear that the
authors in each group are aware of each other’s contributions.

The first unawareness literature (let’s call it the applied literature) consists
of applied models, such as Tirole (2009) and Chung & Fortnow (2016), where
agents are uncertain whether they are aware of everything that their opponents
are aware of, and have to strategically interact under these uncertainties. For
example, in Tirole (2009), a buyer and a seller negotiate a contract as in the
standard holdup problem. At the time of negotiation, there may or may not
exist a better design for the product. Even if a better design exists, however,
the contracting parties may not be aware of it. If a party is aware of it, he can
choose whether or not to point it out to the other party. But even if he is not
aware of it, he is aware that a better design may exist and his opponent may
be aware of this better design. In Tirole’s words, “parties are unaware, but
aware that they are unaware”; and they have to negotiate under this uncertainty.
Chung & Fortnow (2016) consider the plight of an American founding father
drafting a Bill of Rights that will be interpreted by a judge 200 years later. The
founding father is aware of some human rights, but is uncertain whether or not
there are other human rights that he is unaware of. Here, as in Tirole (2009),
the founding father is unaware, but aware that he may be unaware; and he has
to choose how he should write the Bill of Rights in the face of this uncertainty.

The second unawareness literature (let’s call it the foundational literature)
attempts to provide a more rigorous account of the properties of unawareness:
see e.g. Fagin & Halpern (1988), Modica & Rustichini (1994), Modica &
Rustichini (1999), Dekel et al. (2016), Halpern (2001), Li (2006), Halpern &
Rego (2006), Sillari (2006), and Heifetz et al. (2006b), Heifetz et al. (2006a).
These authors are motivated by the concern that ad hoc applied models, if not
set up carefully enough, may go awry in the sense that agents in those models
may violate rationality in some way, as captured by various introspection
axioms (which we shall refer to as the DLR axioms hereafter).! This concern
is articulated in Modica & Rustichini (1994), and Dekel et al. (2016). The rest
of this literature proposes various models that are set up carefully enough to

In particular, two of the key axioms that lie behind Dekel et al.’s (2016) impossibility result
are KU-introspection (‘“the agent cannot know that he is unaware of a specific event”) and
AU-introspection (“if an agent is unaware of an event E, then he must be unaware of being
unaware of E”).
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take these concerns into account.

These two literatures are somewhat disconnected. For example, Tirole
makes no reference to any work in the foundational literature, nor does he
explain whether or not his agents satisfy the introspection axioms that are
one of the main concerns of that literature. Similarly, none of the papers
in the foundational literature explain whether Tirole’s model may fit in their
framework, and if not, whether Tirole’s agents violate some or all of the
introspection axioms. This paper and its companion paper, Board & Chung
(2008), attempt to connect these two literatures.

There is a reason why it is difficult to directly compare Tirole’s model
with the majority of the models proposed in the foundational literature. To
propose a model, and to provide foundations for it, an author needs to explain
how her model should be interpreted. In several of the papers discussed above
(e.g. Fagin & Halpern (1988)), this is done by showing how a formal structure
assigns truth conditions to each sentence of some formal language; i.e., by the
procedure of systematically giving yes/no answers to a laundry list of questions
such as: “At state w, does agent i know that it is sunny in New York?” In
many of the papers more familiar to economists (e.g. Li (2006)), although this
procedure is not performed explicitly, there is typically a clear way to assign
truth conditions to an appropriately-specified language according to the author’s
description of her model. But the procedure of assigning truth-conditions is
well-defined only if the set of questions (to be given yes/no answers) is defined
clearly. This set of questions is determined by the language associated with the
proposed model, and is chosen (either explicitly or implicitly) by the author.
But this also means that we can understand a proposed model only up to its
associated language. If we ask a question that does not belong to the associated
language, we cannot expect to find an answer.

Unfortunately, questions such as “At state w, does agent i know that he
is not aware of everything?” do not belong to the language of many of the
studies in foundational literature (notable exceptions include Halpern & Rego
(2006) and Sillari (2006), which we return to in the next paragraph). More
generally, the languages underlying many of the studies cited above do not
contain quantifiers; while sentences such as “agent i is aware of everything”
(implicitly) do. This provides some explanation as to why it is difficult to
compare the two literatures. In other words, while in Tirole’s model, “parties
are unaware, but aware that they are unaware”, it is difficult to figure out when
or if this would be true of the agents in most of the models proposed in the
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4 Object-Based Unawareness: Axioms

foundational literature. Those models do not address such questions, and hence
our understanding of them is somewhat limited.

Several contributions by logicians and computer scientists, however, present
models that do address these questions (e.g., Halpern & Rego (2006) and
Sillari (2006)). These papers explicitly present and analyze formal languages
that contain quantifiers, and are thus richer than the languages underlying the
models discussed above. Their models, however, are very different from the
applied models used by Tirole (2009) and Chung & Fortnow (2016). For
example, Halpern & Rego (2006) decribe an agent’s awareness by means of a
syntactic awareness function mapping states to sets of sentences of the formal
language, to be interpreted as the set of sentences the agent is aware of. Certain
restrictions are then imposed on the form of this function to capture a plausible
notion of awareness. This “list of sentences” approach is more general, but the
cost of this additional generality is less structure. This may explain why this
approach, while not uncommon in the formal logic literature, is rarely seen in
economics.’

In the specific case of Halpern & Rego (2006), there is a more specific
reason why it could not be used to provide foundations for applied models
such as Tirole (2009) and Chung & Fortnow (2016). In both of these papers,
although agents know what they are aware of, they may be uncertain whether
or not they are aware of everything. Such uncertainty cannot arise in Halpern
& Rego (2006), however.? To capture this kind of uncertainty, they would have

To provide an analogy that may help elucidate this comparison, consider the difference between
Aumann’s information partition model, where a partition of the state space is used to derive an
agent’s knowledge of events, and a “list of sentences” approach where knowledge is instead
modeled by a list of sentences describing exactly what that agent knows.

> For readers who are familiar with Halpern & Rego (2006), this can be proved formally as
follows. Recall the following definition in Halpern & Rego (2006): “Agents know what they are
aware of if, for all agents i and all states s, ¢ such that (s, ¢) € K; we have that A; (s) = A;(1).”
So it suffices to prove that, in any instance of Halpern & Rego (2006) structure, if there is
a state ¢ such that agent 7 is uncertain whether or not there is something he is unaware of,
then there must be another state s such that (s,7) € K; but A;(s) # A;(1). Let @ = Ix—-A;x
represent “there is something that agent i/ is unaware of”’. Therefore, @ means “there is
nothing that agent 7 is unaware of”’. Let 8 = A;a A A;—a A =X;a A = X;—a represent “agent
i is aware of both @ and -« but he does not know whether « or -« is true (recall that X; is
Halpern & Rego (2006) explicit knowledge operator). In short, 8 means “agent i is uncertain
whether or not there is something he is unaware of”. Let M be any instance of Halpern & Rego
(2006) structure, and ¢ is a state such that (M, t) = 8. Then we have (M, 1) E —K;a A =K;—a
(recall that K; is Halpern & Rego (2006) implicit knowledge operator). Therefore, there exists
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to consider a framework in which the formal language is allowed to vary across
states: an agent who is unable to distinguish between two states with different
languages could thus be uncertain about how many sentences there are, and
hence uncertain about how many she is unaware of.

To summarize, while the assumption that “agents are unaware, but are
aware that they are unaware” plays a key role in much of the applied literature
on unawareness, the foundations of these models remain unclear. We do not
know whether agents in these models violate some or all the introspection
axioms that are one of the main concerns of the foundational literature. This
paper and its companion paper, Board & Chung (2008), attempt to provide this
missing foundation.

In these two papers, we describe a model, or more precisely a class
of models, called object-based unawareness structures (OBU structures).
Readers will find that these structures encompass models used in the applied
literature. In comparison with the applied literature, however, we provide
complete and rigorous foundations for these structures. The underlying
language we use is rich, and in particular contains quantifiers, enabling us to
describe explicitly whether or not agents are aware that they are unaware. We
will provide an axiomatization for these structures, verifying that all of the
appropriate introspection axioms are satisfied. The value of thinking about
agents who exhibit this kind of uncertainty has already been demonstrated by
the existing applied literature; we demonstrate the tractability of our framework
by considering further applications.

A key feature of our structures is that unawareness is object-based:* a seller
may be unaware of a better design, or a founding father may be unaware of
a particular human right. In contrast, in models of unforeseen contingencies,
agents are unaware of contingencies, or states. This raises the question of
whether the agents in our model are aware of every state. We do not have
answer to this question. As we argued above, our understanding of any given
model is constrained by the language we choose to work with. Although our
language is one of the richest in the foundational literature, there are questions
that fall outside of it. We do not have answers to these questions, simply
because we do not speak that language.

a state s such that (z,s) € K; and (M, s) E —a, and another state s’ such that (¢, s”) € K;, and
(M, s’) E a. Since @ = dx—A;x, there exists ¢ such that ¢ € A;(s) and ¢ ¢ A;(s’). But that
means at least of one A; (s) and A; (s’) is different from A; ().

4 We discuss other possible sources of unawareness in the conclusion.
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6 Object-Based Unawareness: Axioms

The division of labor between this paper and its companion paper, Board
& Chung (2008), is as follows. In this paper, we give the model-theoretic
description of OBU structures by showing how they assign truth conditions to
every sentence of the formal language. We then prove a model-theoretic sound
and completeness theorem, which characterizes OBU structures in terms of a
system of axioms. We then verify that agents in OBU structures do not violate
any of the introspection axioms that are generally considered to be necessary
conditions for a plausible notion of unawareness. This paper also contains a
more complete literature review, as well as a discussion of several variants of
OBU structures.

In our companion paper, Board & Chung (2008), we give a set-theoretic
description of the OBU structures. Although less formal than the model-
theoretic treatment, we hope this will be more accessible to the general
audience. In parallel to the model-theoretic sound and completeness theorem
in this paper, we prove set-theoretic completeness results in Board & Chung
(2008).

The second half of Board & Chung (2008) considers two applications.
First, we use the model to provide a justification for the contra proferentem
doctrine of contract interpretation, commonly used to adjudicate ambiguities in
insurance contracts. Under contra proferentem, ambiguous terms in a contract
are construed against the drafter. Our main result is that when drafter (the
insurer) has greater awareness than the other party (the insured), and when
the insured is aware of this asymmetry, contra proferentem minimizes the
chances that the insured forgoes gain of trade for fear of being exploited. On the
other hand, when there is no asymmetric awareness, efficiency considerations
suggest no reason to prefer contra proferentem over an alternative interpretive
doctrine that resolves ambiguity in favor of the drafter.

From the perspective of our framework, an argument common among legal
scholars as far back as Francis Bacon, that contra proferentem encourages the
insurer to write clearer contracts, misses the point. If a more precise contract
increases the surplus to be shared between the insurer and the insured, market
forces provide incentives to draft such a contract regardless of the interpretive
doctrine employed by the court. The advantage of contra proferentem is rather
that it enables the insurer to draft more acceptable contracts, by expanding the
set of events that he can credibly insure.

Our second application examines speculative trade. We first generalize
the classical No Trade Theorem to situations where agents are delusional
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but nevertheless satisfy a weaker condition called terminal partitionality. We
then introduce the concepts of living in denial (i.e., agents believe, perhaps
incorrectly, that there is nothing that they are unaware of) and living in paranoia
(i.e., agents believe, perhaps incorrectly, that there is something that they are
unaware of). We show that both living in denial and living in paranoid, in the
absence of other forms of delusion, imply terminal partitionality, and hence
the no trade theorem result obtains.

The structure of this paper is as follows: Section 2 contains our main result.
Section 2.1 first defines the language, or equivalently, the set of sentences that
we are to assign truth values to. Section 2.2 presents our axioms. Section
2.3 then presents the class of structures, which we shall call the object-based
unawareness (OBU) structures, that is axiomatized by exactly the axioms
presented in Section 2.2. Section 2.4 formally states our characterization
theorem.

Section 3 gives an example of our framework in use, showing how one can
use an OBU structure to model those American founding fathers who were
opposed to including the Bill of Rights in the constitution.

In section 4, we verify that our structures satisfy the DLR axioms. Then, in
Section 5, we discuss how to incorporate other axioms of interest.

Section 6 reviews the previous unawareness literature, and Section 7
concludes.

2. OBJECT-BASED UNAWARENESS

We start by introducing our language. Formally, a language is a set of sentences;
it should be rich enough to express everything we might want to say about the
agents in our model, such as “the founding father knows that there are some
human rights he is not aware of”’. As we explain below, this requires working
with a version of first-order modal logic rather than propositional modal logic,
which (implicitly or explicitly) forms the basis of the majority of the models
developed in the preceding literature on unawareness.

Although we do not describe object-based unawareness (OBU) structures
until Section 2.3, let’s use M to denote the class of such structures that
characterizes the axiom system we are about to introduce, with M being a
typical structure within that class. Within the set of all sentences, there is a
subset that is of particular interest, namely those sentences that are valid in
M. The definition of a valid sentence will also have to wait until Section 2.3,
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8 Object-Based Unawareness: Axioms

but roughly speaking valid sentences are those sentences that are always true
in every structure M in M. In fact, the notion of validity (if not the word
itself) appears in other contexts that will be familiar to many economists. For
example, the sentence “it cannot be common knowledge that agents disagree
on the probability of the same fact” is a valid sentence in the class of partitional
information structures with a common prior, and is a result proved by Aumann
(1976) using those structures. Axiomatization of a class of structures such as
M is in effect axiomatization of its set of valid sentences.

Axiomatization of the set of valid sentences takes the form of a procedure
to generate a set of provable formulas that coincides with the set of valid
sentences. The procedure has two parts. First, some sentences are declared
provable directly. These sentences are called axioms. Second, sentences other
than axioms can also be qualified as provable indirectly by association with
existing provable formulas. The association rules are called inference rules.
One way to interpret this exercise is to think of axioms and inference rules as
two different forms of “hidden assumptions” of the class of structures being
axiomatized. Every provable formula one may prove using a given class of
structures must have its root in some of these “hidden assumptions.”

One last remark before we start: although we have been using the word
“sentences” casually so far, we shall stop doing so below. The reason is that
logicians typically reserve the word “sentences” for something else, and use
the word formulas to refer to what we have been calling “sentences.” We shall
follow this convention below.

2.1. The Language

Our language (to be formally defined shortly) is a version of first order modal
logic. Roughly speaking, first order modal logic is first order logic augmented
by modal operators, and first order logic is an extension of propositional logic.
Examples of formulas in propositional logic include —a (read “it is not the
case that @), @ A B (read “a and ), « — S (read “whenever « is true, 8
will be true as well”), etc. First order logic extends propositional logic by
including formulas such as VxTall (x) (“every x is tall”). Modal operators are
represented by letters such as K; and A; that can be affixed to simpler formulas
and result in longer ones: K;« (read “agent i knows that @) and A;« (read
“agent i is aware that @”). In this way, modal operators allow us to construct
formulas that describe the mind of an agent. Their meaning will be governed
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by axioms, which are the subject of the next subsection.’

In addition to K; and A;, we will have a third modal operator denoted L; in
our language. Although we will not present axioms that govern the meaning of
L; until the next subsection, it is useful give an informal interpretation right
now. We would like to use L; to represent an alternative kind of knowledge
that differs slightly from K;. In particular, L; stands for the kind of “know’
that appears in the following English sentence: “If Madison had been aware
of the right to universal suffrage, he would have known that it was important,
and would have included it in the Bill of Rights”. Here, “know” refers to
knowledge in the benchmark case—a hypothetical case where Madison were
not plagued by his unawareness of the right to universal suffrage. It is not the
same as actual knowledge, because Madison was plagued by unawareness.
In the previous literature, what we call “benchmark knowledge” (L;) and
“actual knowledge” (K;) have been called “implicit knowledge” and “explicit
knowledge”, respectively. Although we do not think these names are ideal, they
have entered standard usage and we shall follow henceforth this convention.®

We now formally describe the language. Fix a set N of agents. Fix an
infinite set X of variables, with typical elements x, y, z, x1, x2, x3, . . ., etc. Fix
some vocabulary consisting of a set of relation symbols (predicates); e.g.
Tall(x) (“x is tall”), Taller(x,y) (“x is taller than y”), etc. This generates
a set ® of atomic formulas, P (x1,...,xy), where P is a k-ary predicate and
X1,...,X; € X are variables. Our language £ is the smallest set of formulas
that satisfies the following conditions:

2

if € ®, then ¢ € L;

ifg, € L,then—¢p € Landp Ay € L;

if ¢ € Land x € X, then Vx¢ € L;

if¢pe Landi e N,then L;¢p € L and A;a € L and K;a € L.

Augmenting propositional logic (rather than first-order logic) with modal operators generates
propositional modal logic: this is the language used in most of the previous literature on
unawareness. It should be clear that propositional modal logic does not include formulas such
as “I am not sure whether or not you are aware of something that I am not”.

We believe the names “implicit knowledge” and “explicit knowledge” obscure the fact that L;
is merely an conceptual tool, and is used only as an intermediate step to define K;, which in
turn is our ultimate interest.
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10 Object-Based Unawareness: Axioms

We use the following standard abbreviations:
* aV gfor ~(—a A —=p);

* o — gfor-aVpg;

« a o Bor (@ — B) A (B— a);

e dxa for -Vx—a;

e U;a for —A;a.

Finally, we require that there is a special unary predicate called E. The
intended interpretation of E (x) is “x is real”. The meaning of “real” will
depend on the specific application. For example, a founding father writing the
Bill of Rights may come up with the following list of human rights: freedom of
speech, freedom to bear arms, freedom of choosing one’s own fate. ... Upon
further reflection, he may realize that only the first two are “real” rights, while
the third one is merely an artificially-created concept. For an agent trying
to enumerate animals, on the other hand, horses and cows are “real”, while
unicorns are not.

2.2. The Axiom System

Before we state our axioms, we need one more definition. We say that a variable
x is free in the formula « if it does not fall under the scope of a quantifier Vx.
For example, x is free in Vy Taller(x, y) but not in VxVy Taller(x, y).

We are now ready to present our axiom system, called AWARE, for the
language L. As we explained earlier, an axiom system contains both axioms
and inference rules. We shall group the axioms and inference rules into several
different categories. The first category is borrowed directly from propositional
logic, and is common to all axiom systems in this literature:

7 More formally, we define inductively what it is for a variable to be free in a:
* if ¢ is an atomic formula P (x1,...,xx), then each x is free in the formula;
e xisfreein —a, K;a, A;a, and L;« iff x is free in a;
* xis free in @ A B iff x is free in @ or S;

e xis free in Vya iff x is free in @ and x is different from y.

Journal of Mechanism and Institution Design 6(1), 2021



Oliver J. Board, Kim-Sau Chung 11

PC all propositional tautologies are axioms.

MP from a and @ — g infer S.

PC (propositional calculus) is a set of axioms: propositional tautolo-
gies include formulas such as @ V —a and (Tall(x) A 3xTaller(x,y)) —
AxTaller(x,y). MP (modus ponens) is an inference rule, and says that if «
and @ — [ are provable formulas, then so is 8. Note that any formulas may be
substituted for @ and B, and any variables for x and y.

The second category governs the universal quantifier V:

E1 for any variable x, Vx E(x) is an axiom.

E2 for any formula « and variables x and y, Vxa — (E(y) — a[y/x]) is
an axiom.

E3 for any formulas @ and $ and variable x, Vx(a@ — B8) — (Vxa — Vxf)
is an axiom.

E4 for any formula @ and variable x that is not free in @, @ < Vxa is an
axiom.

UG from « infer Vxc.

Axiom E1 can be rewritten as =3x—FE (x), which gives an interpretation to
the existential quantifier in terms of the predicate E. Since there are at least
two different ways to interpret the existential quantifier, E1 is an important
axiom in the sense that it clarifies which of the two interpretations is adopted
in our system. Consider the following sentence:

“There exist rights that have not been included in the Bill of
Rights—think about the freedom to choose one’s own fate.”

Depending on how we interpret the word “exist”, one may or may not agree that
“the freedom to choose one’s own fate” is an appropriate example in the above
sentence. In particular, if we interpret the word “exist” according to E1, then we
would likely regard that example as inappropriate, because that freedom is not
areal right at all. However, one can conceive another interpretation of the word
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12 Object-Based Unawareness: Axioms

“exist” that would make that example appropriate. These two interpretations
correspond to what logicians call actualist existence and possibilitist existence,
respectively. We consider the possibilitist interpretation as less useful in
economics. The reason, roughly speaking, is that most possibilitist axiom
systems we are aware of lead to constant-domain structures, which is an
especially restrictive property for economic models. We shall return to this
point in Section 6, when we compare our current paper with Halpern & Rego
(2006) and Sillari (2006).

In axiom E2, a[y/x] is the same formula as a with free y replacing every
free x.® To understand axiom E2, one can consider the following conversation:

FATHER: “One difference between horses and goats is that
horses do not have horns.”

soN: “But unicorns have horns.”

FATHER: ‘“‘Unicorns exist only in fantasy stories. What I meant
was: real horses do not have horns.”

The “E(y)” part of E2 captures the father’s qualification in his second
statement, where « is “if x is a horse then x does not have horns”. The basic
idea is that the quantifier V ranges only over “real” things. E3 is straightforward.
In E4, if x is not free in @, then adding Vx at the beginning of @ does not change
the meaning; for example, “for all things, Aumann is an economist” has the
same information content as “Aumann is an economist” (although the former
is rather awkward English). To understand UG, consider a formula such as “x
is either tall or not tall”. Suppose we have managed to find a proof for it by
means of other axioms and inference rules. We would like to make sure that
the formula “for all x, x is either tall or not tall” is also provable; and UG is an
inference rule that will help make sure of this.

The third category governs the meaning of explicit knowledge:

K for any formula a, K;a < (A;a A L;a) is an axiom.

We have already alluded to the idea behind K in Section 2.1: an agent
explicitly knows a fact if and only if he implicitly knows it and he is not plagued
by unawareness problems.

So for example (E(y) A Vx3zP(x,y)) — FzP(y,y) is an axiom, but (E(y) A
Vx3yP(x,y)) — JyP (y,y) is not.
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The fourth category governs the meaning of awareness:

A1 for any formula « that contains no free variables, A;« is an axiom.
A2 for any formulas a and B, (A;a@ A A;B) — A;(a A B) is an axiom.

A3 for any formulas e and g, if every variable x that is free in £ is also free
in @, then A;& — A;f is an axiom.

To see that these three axioms capture the idea that awareness is object-
based, one may heuristically think of a free variable as referring to some
specific object, while a variable that is bound by a V quantifier refers to generic
objects. With this heuristic understanding, our idea that unawareness of a fact
must arise from unawareness of specific objects referred to in the fact will have
three implications, each correspond to one of the three axioms: if a fact does
not refer to any specific objects, an agent will be aware of it (A1); if the agent
is aware of two facts, then he is aware of a more complicated fact which is the
conjunction of the two (A2); and if an agent is aware of a fact that refers to a
collection of specific objects, then he is also aware of a fact that refers to only a
subcollection of them (A3). These three implications, combined together, also
characterize the idea that unawareness of a fact must arise from unawareness
of specific objects referred to in the fact.

The last category governs the meaning of implicit knowledge:

L Li(a — B) — (Lia = Lip).
LN from « infer L;a.

UGL from ¢y — Li(ap — -+ — Li(ap — L;B)---), where h > 0, infer
a; — Li(ay > -+ — Li(ay, = L;¥xp) - - - ), provided that x is not free
inai,...,aq,.

These axioms suggest that our agents are very powerful reasoners indeed,
at least implicitly. Both L and LN, with explicit knowledge replacing implicit
knowledge, are present in (the axiom system that underlies) all standard state-
space models. In this sense they are standard assumptions in economics. L
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14 Object-Based Unawareness: Axioms

says that the agent can apply the inference rule modus ponens in his head (at
least when he is not plagued by unawareness problems). LN says that our
agents implicitly know all provable formulas of AWARE, even formulas that
no one has ever written down, let alone found a proof for and published in a
journal.

UGL is bit of a mouthful. To understand what it says, it may be useful to
put 2 = 0 and simplify it to “from L;8 infer L;Vx3,” which in turn takes a form
similar to UG.

From these axioms and inference rules we can define the set of provable
formulas. A formula can qualify as provable directly because it is an axiom, or
it can qualify indirectly by association. The process of showing that a formula
qualifies as a provable formula is called a “proof.” Formally, a proof is a
finite sequence of formulas, each of which is either an axiom or follows from
preceding formulas in the sequence by applying an inference rule. A proof of
a 1s such a sequence whose last formula is @. A formula is a provable formula
iff it has a proof.

2.3. The Object-Based Unawareness Structures

We now present the class of structures M (together with a truth-value assignment
rule); we shall show (Theorem 1) that this class of structures is axiomatized by
the axiom system AWARE presented in Section 2.2 above.

An object-based unawareness (OBU) structure is a tuple

M=W,D,&P1,....,Pwn Al ..., Ay, 1),
where:
* W is a set of possible worlds, with typical element w;
* D is a set of objects;

e &: W — D is an existence correspondence: & (w) is the set of objects
which are real at world w;

P; : W — 2 is agent i’s possibility correspondence: P; (w) is the set
of worlds that agent i considers possible when the true world is w;

A; : W — 2P is agent i’s awareness correspondence: A; (w) is the set
of objects that agent i is aware of when the true world is w;
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e 7 is an assignment at each w of a k-ary relation 7(w)(P) C D to each
k-ary predicate P.

Intuitively, the assignment 7 describes the properties of each object; these
can differ across worlds, so that for example Alice could be taller than Bob in
world w;, while Bob is taller than Alice in world w,. Let M be the class of all
OBU structures.

The way we intend to use an OBU structure is very standard, and will be
formally captured in the truth-value assignment rule. Before we present the
rule, let’s go through two simple examples first.

As the first example, suppose John is an element in D, and Tall is
one of the predicates. To determine whether or not, in world w, agent i
knows that John is tall, we first construct the event that John is tall, which is
E :={w | |John € m(w)(Tall)}. We then ask two questions: in world w, (1)
does i implicitly know that John is tall (P (w) C E)? and (2) is i aware of John
(John € A;(w))? If both answers are affirmative, then i knows that John is
tall in world w.

As another example, suppose we want to determine whether or not, in
world w, i knows that everyone is tall. Once again, we first construct the event
that everyone is tall, which is E := {w | D,, C n(w)(tall)}. Note that we only
count those people who are “real”—for example, in a world where Jesus has
no son, we do not count “Jesus’ son” even if he is an element in D. We then
ask: in world w, does i implicitly know that everyone is tall? If the answer
is affirmative, then i knows that everyone is tall in world w. Note that we do
not need to ask the awareness question, because no specific person is referred
to in the fact “everyone is tall”’, and hence by assumption there will be no
unawareness problem.

These will all be formally captured by our truth-value assignment rule. Let
a valuation V on an OBU structure M be a function that assigns a member
of D to each variable x. Intuitively, V(x) describes the object referred to by
variable x, provided that it appears free in a given formula, just like how a
name is associated to an object. The truth value of a formula depends on the
valuation, just like whether or not “Bob is tall” depends on which person bears
the name “Bob”.

We say that the fact represented by the atomic formula E (x) is true at state
w of structure M under valuation V, and write

(M,w,V) | E(x),
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iff V(x) is one of the objects in D,,. For facts represented by more complicated
formulas, we use the following rules inductively:

(M,w,V) EP(x1,...,x5) iff (V(x1),...,V(xx)) € m(w) (P);
(M,w,V) E —aifft (M,w,V) | a;
M, w,V) EaABiff (M,w,V) Eaand (M,w,V) E B;

(M,w,V) EVxaiff (M,w,V’) | «a for every x-alternative V’ of V such that
V'(x) € Dy’

(M,w,V) E Ajaift V (x) € A; (w) for every x that is free in «;
(M,w,V) E Liaift (M,w',V) E a forall w € P(w);

(M,w,V) E Kia iff ( M,w,V) E A;a and (M, w,V) E L;a.

If « is true at every w in M under V, we say that « is valid in M under V,
and write

(M,V) E a.
If @ 1s valid in M under every V, we say that « is valid in M, and write
M E a.
If @ is valid in every M € C C M, we say that « is valid in C, and write

CEa.

2.4. The Characterization Theorem

Theorem 1. ¢ € L is valid in M if and only if ¢ is provable in AWARE.

In logicians’ terminology, AWARE is a sound and complete axiomatization
of M in £. The proof of Theorem 1 uses standard methodology.'® We present
the complete proof in the appendix.

° We say that V"’ is an x-alternative of V if, for every variable y except possibly x, V' (y) = V (y).
10See, for example, the proof of Theorem 16.2 in Hughes & Cresswell (1996).
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3. AN APPLICATION

Chung & Fortnow (2016) use a dynamic game with two players (a legislator
who is to write the Bill of Rights, and a judge who is to interpret it 200 years
later) to formalize the argument of those American founding fathers who
opposed the inclusion of the Bill of Rights into the American Constitution.
They prove that, in some parameter range, there is a unique equilibrium where
the legislator, who is not sure whether or not there are still other rights that he
is unaware of, optimally chooses to not to write the Bill of Rights. That is, he
optimally chooses not to enumerate even those rights that he is aware of. The
reason is that, in equilibrium, how the judge treats those rights not in the Bill
depends on how elaborate the Bill is. The more elaborate the Bill is, the more
likely the judge will be to rule that it is constitutional for the government to
infringe those rights not included into the Bill.
They also prove that, even if the legislator adds the sentence

“Any other rights not listed in this Bill are equally sacred and the
government should not infringe them.”

to the Bill, the equilibrium outcome will be the same.

Instead of reproducing the analysis of Chung & Fortnow (2016) here, let’s
focus on how one can use an OBU structure to model that legislator.

Consider the following object-based unawareness structure. There are two
worlds, wy and w», and two rights, s and f, where s stands for “freedom of
speech” and f stands for “freedom to choose one’s own fate”. The true state
is wy, where only s is “real”. However, both s and f are “real” in the other
world, w;. Formally, it means D,,, = {s, f}, and D,,, = {s}. Suppose agent i
is aware of only s in both worlds (i.e., A;(w) = {s} for w = w1, w;). Then,
in world w, and only in world w, there exists some object that the agent is
unaware of. If we use P to stand for some arbitrary property that both objects
satisfy in both worlds (i.e., 7(w)(P) = {s, f} for w = wy, w), then we have:

(M,w) E 3xU;P(x),
(M, Wz) |: —|3xU,~P(x).

Suppose, in the true state w», the agent cannot distinguish w; and w» (i.e.,
Pi(wz) = {w1, wz}). Then he is not sure whether or not there exists some right
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18 Object-Based Unawareness: Axioms

that he is unaware of. I.e., he does not know for sure that there is no such a
right:
(M, w>) E —K;—~3xU;P(x);

and he does not know for sure that there is such a right:
(M, w2) | =K;3xU;P(x).

This lack of explicit knowledge is not due to unawareness, for he can comprehend
both facts:

(M,wy) E A; (=3xU;P (x)), and
(M, w2) E A; (3xU:P (x)) .

His lack of explicit knowledge is due to his lack of implicit knowledge—he
does not (implicitly) know for sure the exact number of rights that really exist.

Note that this is an example with non-constant domains; i.e., D varies across
different worlds. Non-constant domains are important in modelling agents who
are not sure whether or not there exist things that they are unaware of. Consider
the above example again, but suppose D is constant across different worlds.
For example, suppose D,, = {s} in both worlds. Then K;=3xU;P(x) would
have been true in both worlds. Alternatively, suppose D,, = {s, f} in both
worlds. Then K;3xU;P(x) would have been true in both worlds. The possibility
of non-constant domains in our structures arises from our adoption of the
actualist existence axioms. In Halpern & Rego (2006) and Sillari (2006), where
they adopt the possibilitist existence axioms, their structures are necessarily
characterized by constant domains instead.

4. THE DLR AXIOMS

A first impression of some readers of this paper is that object-based unaware-
ness structures violate Dekel et al.’s (2016) AU Introspection Axiom. AU
Introspection is represented by formulas of the form U;¢p — U;U;¢. Indeed,
every such formula is a provable in AWARE (and hence, by Theorem 1, it is
valid in M). To see why, first note that U;a and a have the same free variables,
so A;U;¢p — A;¢ is a provable formula of AWARE (for all ¢ € L and all i). By
simple propositional reasoning, then, U;a — U;U,« is also a provable formula
of AWARE.

Journal of Mechanism and Institution Design 6(1), 2021



Oliver J. Board, Kim-Sau Chung 19

Consider however a similar formula: U;a — U;3xU;a. Suppose a stands
for H(x), “x is a human right”. Then this formula reads “if an agent is unaware
that free speech is a human right, then she is unaware that there is any human
right that she is not aware of”. Clearly we would not want this formula to be a
provable formula in AWARE (or valid in M): clearly we would like to be able
to model agents who are unaware of some things, but aware (or even explicitly
know) that there are things they are unaware of. To show that this formula
is indeed not valid in M (and hence not a provable formula in AWARE)), it
suffices to show that its negation is true in some world w of some object-based
unawareness structure M € M under some valuation V. If @ stands for H(x), x
is free in @ but not in IxU;. Thenif V(x) ¢ A;(w), we have (M, w,V) E U;a
but (M,w,V) [ U;3xU;a, and so (M, w,V) E —(U;a — U;3xU;a).

Another DLR axiom is Plausibility, which is represented by formulas of
the form

Ua — (—|K,~a A =K;=K;@).

Again, every such formula is a provable formula in AWARE. This follows easily
from A3 and K.

Dekel et al. (2016) posit a third axiom of KU Introspection, which is
represented by formulas of the form —K;U;«. Such formulas are not provable
formulas in AWARE. The basic reason is that there are no axioms in AWARE
to preclude an agent knowing something that is actually false. (In this sense,
instead of implicit and explicit knowledge, we should perhaps call L; and K;
implicit and explicit belief.) So an agent may explicitly know/believe that she
is unaware of something, even though she is actually aware of it. Adding the
Truth Axiom (T: L;a — «), would make every instance of —K;U;« a provable
formula.!! In terms of our structures, T corresponds to the restriction that the
possibility correspondences are reflexive: w € £ (w). To be more precise, let
M’ be the class of object-based unawareness structures in which each #; is
reflexive; then the set of formulas that are valid in M" is precisely the set of
provable formulas of AWARE+T.

The impossibility result of Dekel et al. (2016) is stated within the confines of
standard state-space models, and they argue that Necessitation and Monotonicity
are two characterizing features of those models. Both Necessitation and

1 Since our language has two knowledge operators, there are two ways to write the Truth Axiom.
The stronger version is is L;¢ — ¢, which we adopted in the text. An alternative, weaker
version is K;¢ — ¢. Here, even adding the weaker version suffices to make every instance of
-K;U;¢ a provable formula.
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Monotonicity are restrictions imposed on their class of state-space models, and
can be translated into restrictions on our OBU structures as well. Necessitation
corresponds to the restriction that, for any given OBU structure M and valuation
V, if the formula « is true (i.e., (M,w,V) E @) in every world w then the
formula K;a is also true (i.e., (M, w, V) | K;a) inevery world w. Monotonicity
corresponds to the restriction that, for any given OBU structure M and valuation
V, if the formula @« — S is true (i.e., (M,w,V) = @ — ) in every world
w then the formula K;a — K;f is also true (i.e., (M,w,V) E K;a — K;f)
in every world w. In general, our OBU structures do not satisfy these two
restrictions. After all, our OBU structures are not standard state-space models.

S. OTHER AXIOMS OF INTEREST

The axiom system AWARE (and, correspondingly, the class M of all OBU
structures) can be thought of as imposing a minimal set of restrictions on
the behavior of our language £. Various additional assumptions have been
imposed on models of knowledge and unawareness elsewhere in the literature.
In this section, we shall discuss several such assumptions. In each case, we
offer an axiomatic representation, and explain how it corresponds to a particular
subclass of M.

To begin with, the following axioms are standard in the economics literature,
and are implicit in the partitional model of knowledge used in the vast majority
of economic applications:

Pl L,¢ i Ll'Li¢
NI -Li¢ — Li=Li¢p

We have already come across the Truth Axiom T in Section 4. PI is the
Axiom of Positive Introspection, and NI is the Axiom of Negative Introspection.
Note that all three are stated in terms of implicit knowledge L; instead of
explicit knowledge K;. These axioms have been interpreted by some as
rationality requirements on the agents, but generally they are considered to be
unrealistically strong.

As before, we say that an agent’s possibility correspondence %; is reflexive
if w € P (w) for all w. We say that it is transitive if x € P(w) and y € P (x)
imply y € P(w) for all w,x, y; and Euclidean if x € P(w) and y € P(w)
imply y € P(x) for all w,x,y. Let M", M’, and M¢ denote the subclasses
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of M in which all #;’s are reflexive, transitive, and Euclidean, respectively.
We shall also use, for example, M"¢ to denote the subclass of M in which all
P;’s are reflexive and Euclidean. The following straightforward extension of
Theorem 1 formalizes the notion that reflexivity corresponds to T, transitivity
to PI, and Euclideanness to NI:

Theorem 2. The set of formulas « € L that are valid in {M" , M', M¢, M"",
M7, M7 M€Y s exactly the set of provable formulas in AWARE+T,PI,NI,
TPI,.TNLPINI, TPINI.

One may also be interested in an axiom that says every agent knows what
he is aware of:

KA A,¢ — KlAl¢

A related axiom, A-Introspection (A;a < K;A;@), appears in Heifetz
et al. (2006b). Note that KA and A3 imply A-Introspection. AWARE+KA
corresponds to the subclass of M in which the possibility correspondences
satisfy the following restriction: for any w and any w’ € P;(w), A;(w) C
ﬂi(w’).

In the presence of A3 and K, it is straightforward to show that KA is
equivalent to:

LAl A;¢ — L;A;¢ is an axiom.
Inspired by LA1, some may be tempted to add its “mirror image” as well:
LA2 U;¢ — L;U;¢ is an axiom.

LA2 has appeared in some earlier studies on unawareness.'”> We cannot,
however, think of any justification forit,'® other than the purely aesthetic fact that
it looks similar to LA1. It is straightforward to show that AWARE+LA1+LA2
corresponds to the subclass of M where, for any w and any w’ € P; (w),
Ai (w) = A; (W).

121t appears, for example, as Axiom A12 in Halpern (2001).
13 Or perhaps we should say we are not aware of any justification for it.
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6. LITERATURE REVIEW

In this section we shall discuss some of the important contributions to the
literature on unawareness.'* All of these papers share a common feature:
unawareness is associated with events/facts instead of with objects/things.

In an early paper, Fagin & Halpern (1988) take as their starting point the
language of propositional modal logic, and add unawareness modal operators to
allow for U-sentences. To construct models that do not preclude U-sentences,
they augment the standard Kripke structures'> with an unawareness function.
The unawareness function associates with each state a subset of formulas,
listing the facts that the agent is unaware of in that state. They impose no
restriction on the unawareness function, so the agent could be aware of a
formula but unaware of its negation. They also consider an assumption that
awareness is closed under subformulas, which rules out this possibility. They
provide an axiomatization for their structures analogous to our Theorem 1.

Modica & Rustichini (1999) provide the first treatment of unawareness in
the economics literature that avoids the Dekel et al. (2016) critique (and also
address concerns raised in an earlier paper of their own, Modica & Rustichini
(1994)). Their models, called generalized standard models, distinguish between
an objective set of possible worlds and a subjective subset, with the latter
used to represent facts that the agent is aware of. Halpern (2001) shows that
generalized standard models can be viewed as special cases of those in Fagin
& Halpern (1988), with appropriate restrictions on the awareness function. Li
(2006) uses a similar technique to model multi-agent unawareness; it should be
noted that the extension to multiple agents is not trivial in this context.

Heifetz et al. (2006b) deal with the extension to the multi-agent case in a
different way. They work with a partially ordered set of sets of possible worlds,
where the ordering represents the expressive power of each set. For instance, if
there are only two primitive propositions of interest, their structure consists of
four sets of sets, with the most expressive one describing situations involving
both propositions, two less expressive sets describing situations involving
the first and the second propositions respectively, and the least expressive set
describing only situations that involve neither. These sets are used to represent

4 A comprehensive bibliography can be found on Burkhard Schipper’s website:
http://www.econ.ucdavis.edu/faculty/schipper/unaw.htm

IS A Kripke structure is, roughly, a more general version of the partitional information structure,
together with a function that specifies which primitive propositions hold in which states.
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the awareness of agents. In a companion paper, Heifetz et al. (2006a) provide
an axiomatization for their structures.

None of the papers discussed so far allows us to model agents’ reasoning
about their possible lack of awareness. Two recent papers work with languages
that include sentences such as “I am not sure whether or not you are aware of
something that I am not”. Halpern & Rego (2006) use second-order modal
logic, augmenting the language of Fagin & Halpern (1988) by including
quantifiers over formulas. The resulting language includes formulas such as
VxK;Ax, to be read as “agent i knows that agent j is aware of every formula”.
More closely related to our current paper, Sillari (2006) uses a language that is
identical to ours.

One difference between these two papers and ours is that they have very
different axioms for the existential quantifier. In particular, their axioms
correspond to what logicians call the possibilitist interpretation of existence,
whereas ours correspond to the actualist interpretation. Although both kinds
of axioms have their proponents, we believe possibilitist existence is less useful
when it comes to constructing economic models. The reason, roughly speaking,
is that most possibilitist axiom systems we are aware of come with the Barcan
Formula,'® which, when coupled with other axioms familiar to economists,
will have undesirable implications. To illustrate this, let’s consider what would
have happened had we adopted the possibilitist axioms as well. By this, we
mean replacing our Axiom E1 with the Barcan Formula:

BF for any formula « and variables x, VxL;a — L;Vxa is an axiom.

and replacing our Axiom E2 with:

E2’ for any formula « and variables x and y, Vxa — «[y/x] is an axiom.

The class of structures that is axiomatized by this new axiom system is
exactly those object-based unawareness structures where & (w) = W for every
w € W. If we further add Axioms LA1 and LA2—which, as we explained in

161t is named after the philosopher and logician Ruth Barcan Marcus, the founder of first-order
modal logic.
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Section 5, appeal to many economists—then the resulting subclass of M will
have a very undesirable feature. In any structure within this subclass, an agent
either knows for sure that there exists something he is unaware of, or knows for
sure that there is nothing he is unaware of—but he can never be uncertain. If
he were to assign a probability to the event that there exists something he is
unaware of, then that probability would have to be either 0 or 1—it could not
lie strictly between 0 and 1.

As Sillari (2006) points out, this very problem arises in Halpern & Rego
(2006): “The second-order logic of Halpern and Rego also requires the
Barcan to be validated, hence does not lend itself to model knowledge as
high-probability operators.” That is, once Halpern & Rego (2006) incorporate
axioms analogous to LA1 and LA2 into their axiom system, sentences such as
“the agent is not sure whether or not there are still things that he is unaware
of” or “I am not sure whether or not you are aware of something that I am not”
will become contradictory in their resulting structures—they must be false in
every world of every structure.

Although Sillari (2006) also adopts the possibilitist axioms for the existential
quantifier, his axiom system is an exception in that it does not contain the
the Barcan formula, as he has very different axioms for implicit knowledge.
His weaker axioms on implicit knowledge lead to a class of structures very
different from our OBU structures. Roughly speaking, our OBU structures are
generalizations of Kripke structures, which are more familiar to economists;
while his structures are generalizations of the neighborhood semantics.

Another, more important, difference between Halpern & Rego (2006) and
Sillari (2006) and our current paper lies in the way unawareness is modelled.
Both of them use the same approach as Fagin & Halpern (1988) by introducing
an unawareness function that assigns to each agent in each possible world a
list of those formulas that agent is unaware of—we call this the semi-syntactic
approach. In our object-based approach, on the other hand, we provide a
foundation for awareness of formulas in terms of awareness of objects.

We believe the object-based approach offers an advantage over the semi-
syntactic approach. Logicians like to preserve a clear distinction between the
extra-linguistic reality (which we can think of in our structure as W, D, &, %},
and A;) as the semantics (the truth-value assignment rule) which maps the
language into this reality. This distinction is cut by the semi-syntactic approach,
which explicitly uses the language to represent part of the reality (specifically,
the awareness of the agents). Why does this matter? In the semi-syntactic
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approach, any restrictions that are imposed on the awareness function (Halpern
& Rego (2006) consider several) must of course be expressed linguistically,
and correspond closely to equivalent axioms in the axiom system. But in
the object-based approach, the (non-linguistic) awareness function and the
assumptions we make about it look very different from the corresponding
axioms governing the behavior of the awareness operator: this gives us two
different viewpoints from which to assess the reasonableness of our underlying
model of awareness.

At the risk of setting up a strawman, consider as an analogy two different
ways of modelling knowledge: first, the standard approach, where we have
a set of possible worlds, and a possibility correspondence for each agent
describing, in each world, which worlds the agent consider possible; second,
a semi-syntactic approach, where instead of the possibility correspondence
we have a knowledge function which simply lists the set of formulas each
agent knows in each world. Just as various assumptions about the possibility
correspondence (that it is reflexive, transitive, etc.) correspond to various
axiomatizations of the properties of knowledge (in some appropriate language),
restrictions could be imposed on the knowledge function to derive similar
equivalence results. But it is clear that the standard approach offers us two
distinct perspectives on the concept of knowledge, and potentially a better
understanding of it, while the semi-syntactic approach offers only one.

Finally, we should also mention the contribution of Feinberg (2004), who
adopts an ingenious meta-approach to the problem: instead of attempting
to express unawareness directly within the formal language, he describes
unawareness implicitly by describing which subsets of the language make up
each agent’s subjective world view.

7. CONCLUSION

In this paper we have proposed a user-friendly model that allows us to express
sentences such as “the agent is not sure whether or not there are still things that
he is unaware of”’. Instead of trying to assign truth values to these sentences
within existing unawareness models in the literature, and worrying about
whether or not the truth-value-assignment rule is consistent with some set
of “reasonable” axioms, we started with an explicit list of axioms, and then
constructed the class of structures (together with a truth-value-assignment rule)
that is axiomatized by exactly those axioms. As an application, we explained
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how our structures can be used to model the actions of those American
founding fathers who were opposed to the inclusion of the Bill of Rights into
the constitution.

Appendix A:

In this appendix we shall prove Theorem 1. Throughout this proof, PC and
MP will be used too often for us to acknowledge every time. Hence we shall
often refrain from citing their names when we use them.

As usual in this literature, the proof involves two steps: the soundness part
and the completeness part. The soundness part says that all provable formulas
of AWARE are valid in M. The completeness part says the converse is also
true.

Lemma 3. Every provable formula a € L of AWARE is valid in M.

Proof. We shall prove that each axiom is valid in every M € M, at every w,
and under every V; and that each inference rule preserves validity. We shall,
however, skip the parts of PC and MP.

For E1, notice that for every x-alternate V' of V such that V’'(x) € D,,, we
have (M,w,V’) E E(x), which implies (M, w, V) | VxE(x).

For E2, suppose (M, w,V) |E Vxa and (M,w,V) = E(y) but (M,w,V)
a[y/x]. Let V' be the x-alternative of V such that V’(x) = V(y). Then we have
both (M,w,V’) £ @ and V’(x) € D,,, contradicting that (M, wV) [ Vxa.

For E3, suppose (M,w,V) E Vx(a@ — B) and (M,w,V) E Vxa. Then,
for any x-alternative V’ of V such that V’(x) € D,,, we have both (M, w,V’) |
a — B and (M,w,V’) |= @, which implies (M,w,V’) | B, which in turn
implies (M, w,V) E Vxp.

For E4, notice that if x is not free in a, then (M, w,V) E aift (M,w,V’) E
«a for any x-alternative V' of V.

For UG, suppose (M, w, V) [~ Vxa. Then there exists some x-alternative
V’ of V such that V'(x) € D,, and (M,w,V’) [£ «a, which implies that the
formula « is not valid in M.

For K, it follows directly from the truth-value-assignment rule in Section
2.3.

For A1, notice that if @ contains no free variables, then V(x) € A(w) for
every x free in @, and hence we have (M, w,V) E A;a.
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For A2, suppose (M,w,V) E A;a and (M,w,V) E A;B. Then V(x) €
A(w) for every free x in @ and every free x in 3, and hence also for every free
x in a A B, and hence we have (M, w,V) E A;(a A B).

For A3, suppose (M, w,V) = A;a. Then V(x) € A(w) for every free x in
@, and hence also for every free x in 3, and hence we have (M, w,V) | A;B.

For L, suppose (M,w,V) E Li(a — B) and (M,w,V) [ L;a but
(M,w,V) [£ L;B. Then there exists some w’ € $;(w) such that (M,w’,V) |
a — Band (M,w’,V) E a but (M,w’,V) |~ B, contradicting the truth-value-
assignment rule in Section 2.3.

For LN, suppose (M,w,V) [ L;a. Then there exists some w’ € P;(w)
such that (M, w’, V) £ @, which implies the formula « is not valid in M.

For UGL, suppose (M,w,V) ¥ a1 — Li(az — -+ — Li(ap —
LNxp) - ) Then there is a sequence wi,...,wp; such that w; = w,
(M,wi,V) Eagforl < k < h,and (M,wp41,V) £ VxB. Moreover, there
eixsts some x-alternative V' of V such that V’(x) € D,,,,, and (M, wp41, V') £
B. Since x is not free in each ay, we have (M, w;,V’) E ay for 1 < k < h,
which implies (M, w,V’) | a1 — Li(aa — -+ = Li(ap — Lip)---),
which in turn implies the formula @) — L;(ea — -+ — Li(ay = LiB) )
is not valid in M. O

By the truth-value-assignment rule in Section 2.3, the formula a A —a is
not valid in M, and hence by Lemma 3 is not a provable formula in AWARE.
That there are some formulas that are not provable in AWARE means that the
system is “consistent” in logicians’ terminology. More importantly, it implies
that it cannot be the case that both @ and -« are provable formulas of AWARE.
This observation will be used in subsequent proofs.

As usual, the proof of the completeness part involves the construction of
a structure M € M, called the canonical structure, and a valuation V, such
that every formula o € £ that is valid in M under V is a provable formula of
AWARE. Completeness then follows from the fact that any formula o € L that
is valid in M must also be valid in M under V.

We say that a formula @ € L is AWARE-consistent if -« is not a provable
formula of AWARE. We say that a finite list of formulas {a/,...,a;} € Lis
AWARE-consistent if the formula a; A ... A @i is AWARE-consistent. We say
that an infinite list of formulas is AWARE-consistent if every finite sublist of it
is AWARE-consistent.

We say that a list of formulas is maximal if, for every formula « € £,
either @ or -« is in the list. We say that a list of formulas is maximal
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AWARE-consistent if it is both maximal and AWARE-consistent.

It is a standard result that if @ is a provable formula of AWARE, then it is in
every maximal AWARE-consistent list.

We say that a list I' of formulas possesses the LV-property if

1. for every formula @ and variable x, there is some variables y such that
the formula E(y) A (a[y/x] — Vxa)isinT;

2. for any formulas g1, ..., B, (h > 0) and «, and every variable x that is
not free in Sy, ..., B, there is some variable y such that the formula

Li(ﬁl — > Li(ﬁh — Li(E(y) — Cl[y/x]))"‘) — Li(B1 —
+— Li(Byp — L¥xa)---)isinT.

Lemma 4. If formula o is AWARE-consistent, then there is an AWARE-
consistent list I of formulas with the LN-property such that a € T'.

To prove Lemma 4, we need another lemma first.

Lemma 5. The formula 3y(0]y/x] — Vx0) is a provable formula of AWARE.

Proof. By E2, the formula (E(x) AVy8[y/x]) — (8[y/x])[x/y] is a provable
formula. Notice that (8[y/x])[x/y] gives us back 6. Therefore, by UG and
E3, the formula VxE (x) — Vx(Vy6@[y/x] — 0) is a provable formula. By E1
and E3, the formula VxVy0[y/x] — Vx6 is a provable formula. But x is not
free in Yy6|[y/x] anymore, and hence by E4, the formula

Vy@[y/x] — Vx6 (1

is a provable formula.
Given (1), it suffices to prove that the formula

Vy=(0[y/x] — VYx0) — —~(VyO[y/x] — Vx0) 2)

is a provable formula.

By PC, both formulas =(8[y/x] — Vx0) — 08[y/x] and ~(0[y/x] —
Vxf) — —Vx6 are provable formulas. By UG and E3, both formulas
Vy=(0[y/x] — Vx0) — VyO[y/x] and Vy-(6[y/x] — Vx0) — Vy-Vx0
are also provable formulas. Since y is not free in =Vx6, by E4, we have (2) as
needed. O
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Proor or LEMMA 4: Assume that all variable x are enumerated, and
similarly for all formulas of the form Vx6, and similarly for all formulas of
the form L;(& — -+ — Li(&y — L;Vx60) ---) with A > 0 and x not free in
&l éne

Define a sequence of lists of formulas Iy, I, ... as follows: Iy = {a}.
Given I, we define I',,; in two steps.

Step 1: We first extend I',, to I';}. Let Vx6 be the n + 1st formula of this
form. Let y be the first variable that does not appear in I';, and 6, and define

I, =T, U{E(y),0]y/x] — Vxb6}.

We claim that, as long as I, is AWARE-consistent, I'y is AWARE-consistent
as well. Suppose not. Then the formula 8 — (E(y) — —(0[y/x] — Vx6)),
where  denote the (finite) conjunction of all formulas in I';,, is a provable
formula. By UG, E3, and E4 (applicable because y does not occur in f3), the
formula 8 — (VyE(y) — Vy—(0[y/x] — V¥x6)) is a provable formula. By
El, the formula 8 — Vy—(6[y/x] — Vx6) is a provable formula. By Lemma
5, the formula = is a “theroem,” contradicting the presumption that I, is
AWARE-consistent.

Step 2: We next extend I} to [y, Let Li(& — -+ — Li(& —
L;Vx6) - -- ) be the n + 1st formula of this form. Let y be the first variable

that does not appear in I} and &1, . .., &y, and define Iy = T U {L;( & —

- - Li(fh — Li(E(y) — Q[y/x]))---) — Li(é — -+ > Li(é& —

LVx0) - -- )}.
We claim that, as long as I'}} is AWARE-consistent, I, is AWARE-consistent
as well. Suppose not. Then both formulas

B — Li(‘fl —>“'—>Li(§h—>Li(E(y)—>9[y/x]))"') 3)
and
B — L& — -+ —> Li(ép, — LiV¥x0) ), 4)

where 8 denotes the (finite) conjunction of all formulas in I'}}, are provable
formulas.
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Since y does not appear in I';}, by UGL (putting n = h + 1), from (3) we
infer that the formula

B - Li(fl = o Li & = LYY(E() — 9[y/x]))-~) (5)

is a provable formula.

By E3, LN, and L, the formula L;Vy(E(y) — 0[y/x]) — (LNVyE(y) —
L;Vy0[y/x]) is a provable formula. Since by E1 and LN, the formula L;VyE (y)
is also a provable formula, we infer that the formula L,-Vy(E (y) = 0]y /x]) —
L;Vy6[y/x] is a provable formula. By using LN and L repeatedly (for / times

to be exact), we infer that the formula L; (g—‘l — e L (gh — L,-Vy(E (y) =

9[y/x]))~~) — Li(éy — -+ = Li(é&, > LVy8[y/x])--+) is a provable

formula. From this, together with (5), we infer that 8 — L;(& — -+ —
Li(&n — L¥yO[y/x])---) is a provable formula. From this, together with
(4), we infer that =f3 is a provable formula, contradicting the presumption that
I} is AWARE-consistent.

We cannow letI" be the union of all I';,’s. Since I'y is AWARE-consistent, I"is
also AWARE-consistent. And I' will have the LV-property by construction. O

Lemma 6. If an AWARE-consistent list I' of formulas possesses the LV-
property, then there is a maximal AWARE-consistent list A of formulas with the
LY-property such that I" C A.

Proof. Assume all the formulas in £ are enumerated. Define a sequence of
lists of formulas Ag, Ay, ... as follows: Ag = I'. Given A, let @ be the n + 1st
formula in £, and let A1 = A, U {a} if A, U {a} is AWARE-consistent, or
Ani1 = A, U {=a} if not. In either case A1 is AWARE-consistent if A, is. We
can now let A be the union of all I'},. O

The construction of the canonical structure is as follows. ‘W is the set of
all maximal AWARE-consistent lists of formulas with the LV-property. D is
the set of all variables in L; or equivalently, D = X. For every state w, which
by construction is a list of formulas,

* D, is the set of all variables x such that E(x) € w;

* Pi(w) is the set of all states w’ such that L; (w) € w’, where L7 (w) is
the set of all formulas « such that L;a € w;
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e A;(w) is the set of all variables x such that A;E(x) € w; and

* forevery k-ary predicate P, 7(w)(P) is the set of all k-tuples (x, . .., xx)
such that P(xy,...,x;) € w.

Notice that, for any list w € W, since w satisfies the part 1 of the L;V-
property, there must be at least one variable y such that E(y) € w, and hence
D,, is non-empty. Therefore the canonical structure is indeed an instance of
the object-based unawareness structures.

Lemma 7. If T is a maximal AWARE-consistent list of formulas with the LV-
property, and « is a formula such that L;« ¢ T, then there is a maximal AWARE-
consistent list A of formulas with the LV-property such that L; (I') U {-~a} C A,

Proof. Assume that all variables x are enumerated, and similarly for all formulas
of the form Vx6, and similarly for all formulas of the form L;(¢; — -+ —
Li(€n — LVx0) ---) with A > 0 and x not free in xy, . . ., xp.

Define a sequence of formulas 6, 01, . . . as follows: d¢ is —a@. Given 9,
we define 0,4+ in two steps.

Step 1: We first extend 6, to 5. Let Vx6 be the n+ 1st formula of this form.
Let y be the first variable such that L7 (I') U {6, A E(y) A (8]y/x] — Vx60)}
is AWARE-consistent, and let 67 be 6, A E(y) A (0[y/x] — Vx0).

We claim that, as long as L; (I') U {6,} is AWARE-consistent, such a
variable y must exist. Suppose not. Then for every variable y there is a finite

sublist {L;81,...,L;Br} c I'suchthat (81 A...ABr) — (E(y) — (6, —

=(0]y/x] — Vx@))) is a provable formula of AWARE. Therefore, by LN and
L, the formula

(LiBiAN...NLiBr) — Li(E(y) - ((5n — =(0]y/x] — Vx@)))

1s also a provable formula of AWARE. Since I" is maximal AWARE-consistent and
LiBi. ..., Lifi € T, we have L,-(E(y) — (60 = =(6[y/x] — vxe))) €T as
well. And this is so for every variable y.

Since I" has the LV-property, there is a variable y such that the formula

Li(EG) = (6, = =(0Ly/x] = ¥30))) = Li¥z(6, — =(0[z/x] — Vx6)
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is in I', where the variable z is chosen so that it does not occur in §,, or in 6.
Since L; (E(y) — (6, = = (8[y/x] — Vx@))) is in I" for every variable y, the

formula
Li¥z(6, — —(0[z/x] — Vxb))

is in I'. But z does not occur in ¢, or 6, and so by E3 and E4, the formula
Li(6, — Yz=(0[z/x] — Vx6))

isalsoinT.
However, by Lemma 5, the formula

Jz(0[z/x] — Vx0)
is a provable formula of AWARE. So the formula
Li=6,

must also be a provable formula of AWARE, and hence is in I', or equivalently,
=0, € L; (I'). And this would make L:(I') U {6,,} AWARE-inconsistent, a
contradiction.

Step 2: We next extend 6} to 6,41. Let L;(& — -+ — Li(& —
L;¥x) - - -) be the n + 1st formula of this form. We may assume that x is not
free in 6; or in &, ..., &, since if it is we may choose a bound alphabetic
variant of Vx6 in which the variable that replaces x is not free in these formulas.

Let y be the first variable such that L-(I") U {5, A (L,- (51 — - L; (fh —

Li(E(y) — Q[y/x]))) N Li(fl — o = Li(& — Li‘v’x9)--~))}

is AWARE-consistent, and let 6,1 be §; A (Ll-(fl — . = L,-(fh —

Li(E(y) — 9[)’/35])) ) — Li(&y — -+ — Li(é, — Li¥x0) ))

We claim that, as long as L (I') U {d,} is AWARE-consistent, such a
variable y must exist. Suppose not. Then for every variable y there is a

finite sublist {L;B1,...,L;Bx} C I such that (81 A ... A Br) — (6; —
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(1l = = it o LEG) = 0lxD) ) - Ll o

Li(&p, — LiVx0) - -- ))) is a provable formula of AWARE. Therefore, both

(BIA...ABr) — (6; —
(6)
Li(§1 — o Li(§h — Li(E(y) — Q[y/x])) ))

and
(BiA...ABL) — (5; S aLi(& = - o Li(é —>L,-\7’x9)...)) )

are provable formulas of AWARE. From (6), by LN and L,

(L[,Bl AN A L,-,Bk) — L; 5; -
8)
Lf(fl = oo Lif# o L(EG) - 6ly/x])) ))
is also a provable formula of AWARE. Since formulas L;(31, ..., L;Bx are all in

I', so, from (8), the formula

Li(a,: -~ Ll-(fl = oo L&) > Li(EG) - 0ly/x1) ) ))

is also in I'. And this is true for every variable y.
Since I has the L;V property, by a similar argument as in Step 1, the formula

Li((ﬁ — Li(éy — -+ — Li(én — Li¥x0) - ))
is also in I'', or equivalently, the formula
5;: — L,‘(é‘:l — s> Li(é:h g L,~\7’x0) )

is in L7 (I'). This, together with (7), would make L. (I") U {6} AWARE-
inconsistent, a contradiction.
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Since L; (I')U{do} is AWARE-consistent, L7 (I")U{6; } and L. (I") U{0 41}
are AWARE-consistent for all n.

Let A™ be the union of L. (I') and all the 6,,’s. A~ is AWARE-consistent,
and by construction, also possess the L;V property. Therefore, by Lemma 6, A~
can be extended into a maximal AWARE-consistent list A with the L,V property
such that L7 (I") U {-a} € A. O

Lemma 8. Let M be the canonical structure, and V be the valuation such
that V(x) = x for every variable/object x € X = D. Then, for every maximal
AWARE-consistent list w € ‘W of formulas with the LNY-property, and for every
formulaa € L, (M, w,V) Eaiffa €w.

Proof. The proof proceeds by induction on the length of the formulas. For any
atomic formula of the form E (x), (M,w,V) | E(x) iff V(x) € D,, iff x € D,,
iff £(x) € w.

For any other atomic formula of the form P(xy,...,xz), (M,w,V) E
P(xq,...,xg) iff (V(x1),...,V(xx)) € m(w)(P) iff (x1,...,xx) € 7(w)(P)
iffP(Xl, R ,xk) cw.

For any formula of the form —a, (M, w,V) E —a iff (M, w,V) £ a which,
by the induction hypothesis, is true iff @ ¢ w which, by the maximality of the
list w, is true iff —a € w.

For any formula of the form a A B, (M,w,V) Ea A Biff (M, w,V) E«a
and (M, w, V) | B which, by the induction hypothesis, are true iff @ € w and
B € w which, by the maximal AWARE-consistency of the list w, are true iff
aApew.

For any formula of the form Vxa, suppose Vxa € w. Consider any x-
alternative V’ of V such that V'(x) = y € D,,. Since y € D,,, we have
E(y) € w. By E2 and the maximal AWARE-consistency of the list w, we
have a[y/x] € w. By the induction hypothesis, we have (M, w,V) | a[y/x],
which in turn implies (M, w, V’) |= a. Since this is true for every x-alternative
V’ of V such that V'(x) € D,,, we have (M,w,V) E Vxa.

Conversely, suppose Vxa ¢ w. Since the list w possesses the LV-property,
there is some variable y such that E(y) A (a[y/x] — Vxa) € w. By the
maximal AWARE-consistency of the list w, we have E(y) € w (making
y € Dy,) and a[y/x] ¢ w. By the induction hypothesis, the latter implies that
(M,w,V) [ aly/x], which in turn implies (M, w,V’) [ @, where V' is the
x-alternative of V such that V’(x) = y. But V'(x) € D,,, and hence we have
(M,w,V) |£ Vxa.
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For any formula of the form A;a, let {xy, ..., x;} be the free variables in .
If k£ = 0, then we have (M, w,V) = A;a and, by A1 and the maximal AWARE-
consistency of the list w, A;a@ € w as well. So let’s assume k£ > 1. Since
V(x) € A;(w) iff x € A;(w) iff A;E(x) € w, we have (M, w,V) E A;a iff
A;E(x) € w for every x € {xy,...,x;}. By A2, A3, and the maximal AWARE-
consistency of the list w, we have A;E(x) € w for every x € {xy,...,x;} iff
A,'(E(xl) VAN E(Xk)) e wiff Aja e w.

For any formula of the form L;a, suppose L, € w. Then we have
@ € L (w), which implies & € w’ for every w” € $;(w). By the induction
hypothesis, we have (M,w’,V) E a for every w’ € P;(w), which implies
(M,w,V) E L.

Conversely, suppose L;a@ ¢ w. By Lemma 7, there is an w’ € ‘W such that
L-(w)U{-a} € w'. Since L (w) C w’, we have w’ € P (w). Since ~a € w’,
by the induction hypothesis, we have (M, w’, V) [~ @. Combining the two, we
have (M,w,V) [ L;a.

For any formula of the form K;a, (M,w,V) E K;a ift (M,w,V) E Aja
and (M, w,V) [ L;a which, by the induction hypothesis, are true iff A;a € w
and L;a € w which, by K and the maximal AWARE-consistency of the list w,
are true iff K;a € w. |

ProOF OF THEOREM 1: That every provable formula of AWARE is valid in
M follows from Lemma 3. To prove the converse, suppose formula @ € £ is
not a provable formula of AWARE. Then -« is AWARE-consistent, and hence
by Lemmas 4 and 6, there exists a maximal AWARE-consistent list w € ‘W with
the LV-property that contains it. By Lemma 8, (M, w, V) [ —a. Therefore
a is not valid in the canonical structure M under the valuation V. Since the
canonical structure is one instance of the object-based unawareness structures,
this proves that « is not valid in M. O
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